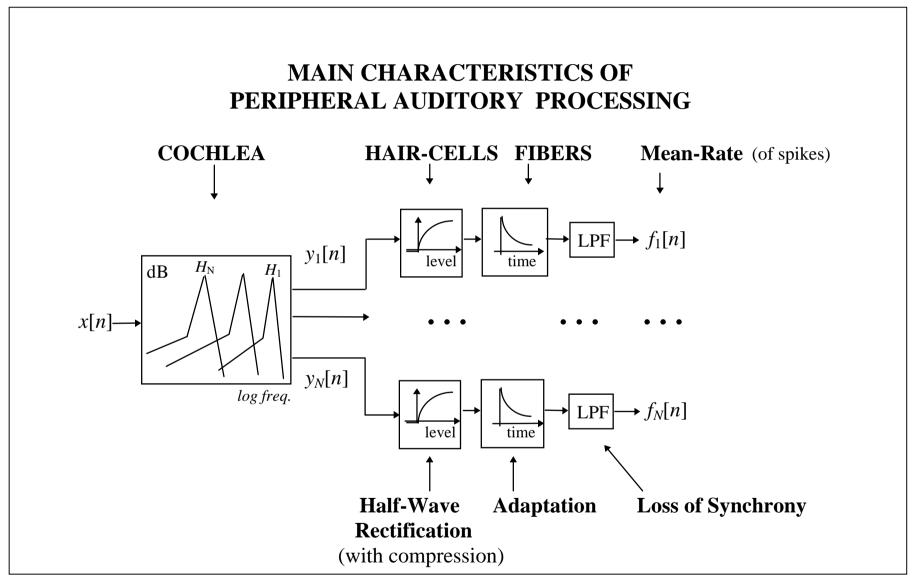
# AUDITORY MODELS FOR SPEECH RECOGNITION

Fernando S. Perdigão

Instituto de Telecomunicações - Pólo de Coimbra Dept. Eng. Electrotécnica - Pólo II da Univ. Coimbra 3030 COIMBRA - PORTUGAL fp@co.it.pt



# Research on Auditory Models

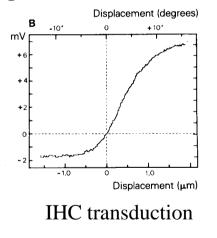

### MOTIVATION:

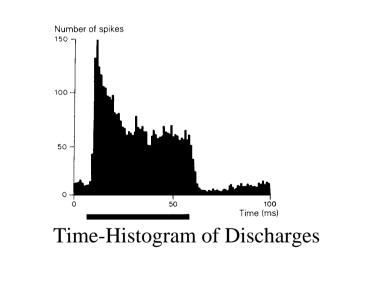
- Auditory Models have shown to be superior in recognition tasks when environment degrades (additive noise + linear filtering).
- There is not a deep understanding of their functioning.

#### **OBJECTIVE:**

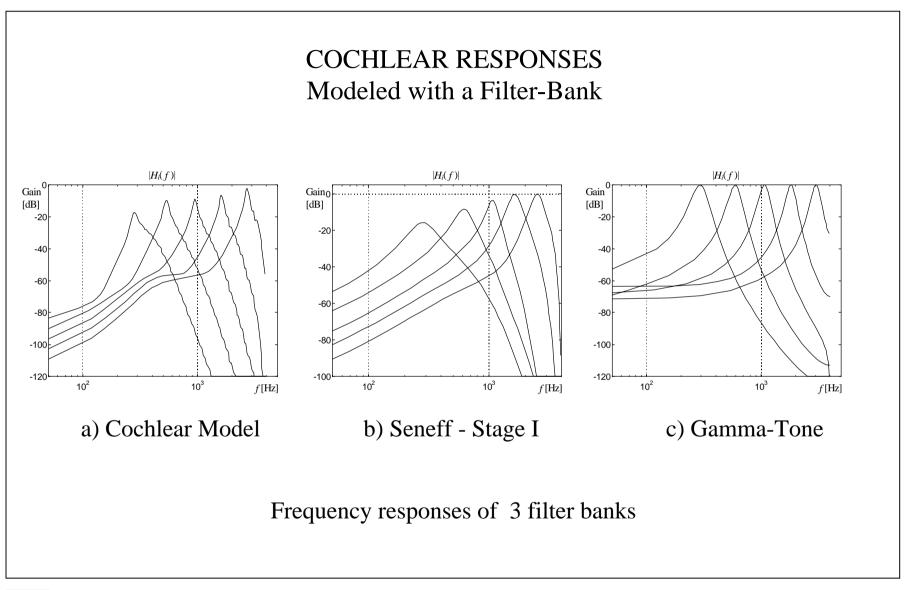
- Verify if there are advantages in the characterization of speech signals using models of the auditory periphery.
- Compare Auditory Models with other speech analysis methods.



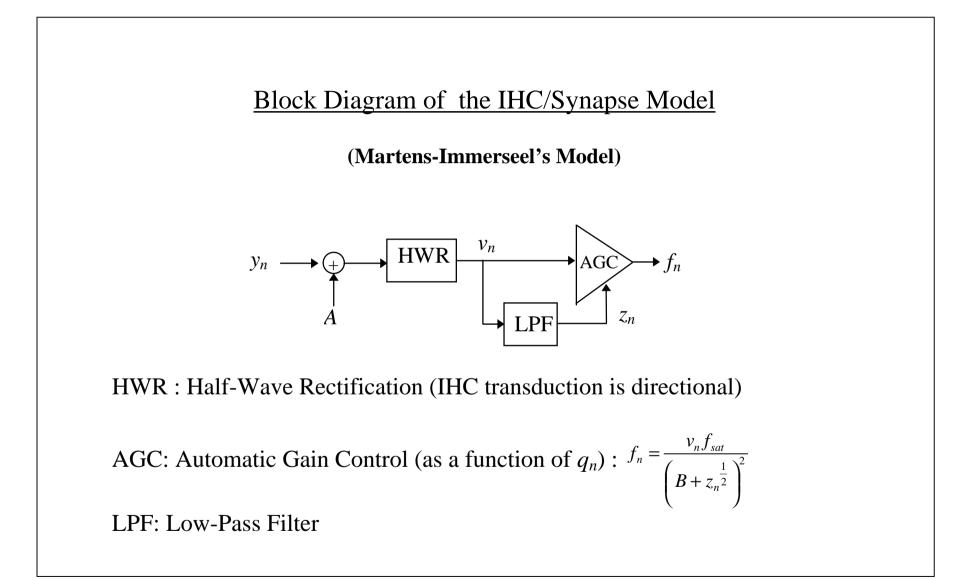



### INNER-HAIR CELLS AND NERVE FIBERS


#### Main Characteristics:

- Half-Wave Rectification (IHC transduction is directional)
- Auditory Fibers Firing-Rate
  - Spontaneous and Saturation values
  - Threshold of excitation
  - Adaptation











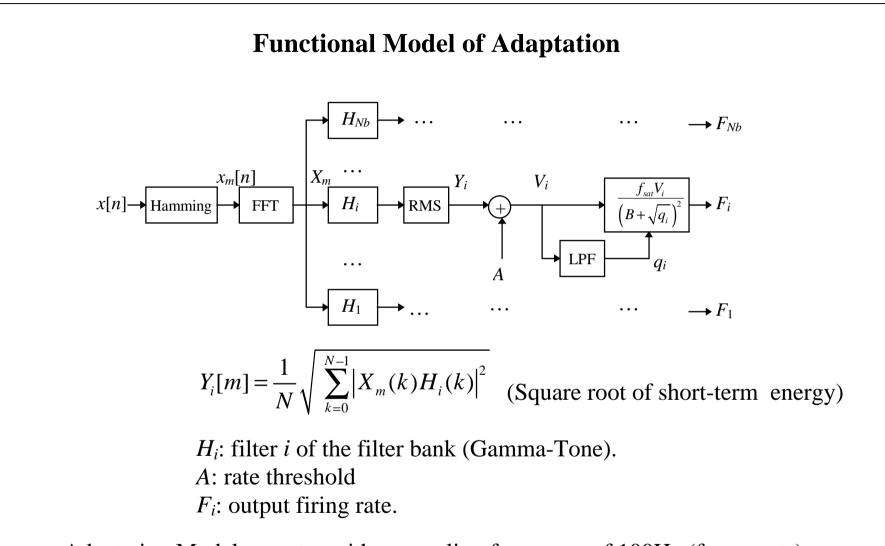





### **Problems with IHC/Synapse Models:**

- Due to non-linearities they have to be simulated in time, on a sample-by-sample basis. This demands a high computational load.
- The output mean-rate is then decimated to have a feature representation every 10ms.

But, the study carried out shows that:


Adaptation can be reasonably modeled in terms of the short-term envelope of the energy (or RMS value) of the sub-band signals.

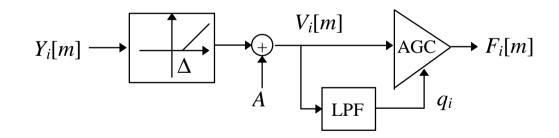
 $\Rightarrow$  Functional Model of Adaptation

 $\Rightarrow$  Energies are computed in frequency domain (using the FFT).

 $\Rightarrow$  Adaptation is modeled with RMS values.



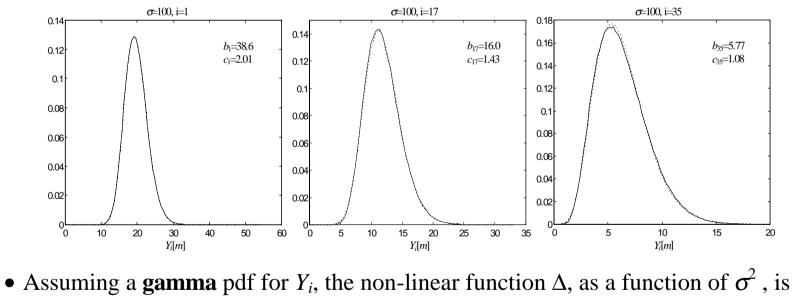



Adaptation Model operates with a sampling frequency of 100Hz (frame-rate).



### NOISE SUPPRESSION

- Mean-Rate representation is <u>very sensitive to noise</u>. (noise increases mean-rates and adapts the response due to speech).
- [Vereecken & Martens, Eurospeech'95] proposed a **Center-Clipper** in front of the IHC model.
- An analogous noise suppression technique was used, based on:


$$V_i[m] = A + \max(Y_i[m] - \Delta, 0)$$



- $\Delta$  is a function of the noise level,  $\sigma^2$ .
- kind of a spectral subtraction with a noise floor.



- The level  $\Delta$  is chosen in order to keep the mean of  $V_i$ ,  $E(V_i[m]) = (1+\varepsilon)A$  (almost constant), and is estimated during speech pauses.
- The knowledge of the pdf of  $Y_i$  is <u>needed</u>.
- An empirical study showed that RMS values,  $Y_i$ , follow approximately a **gamma** distribution:  $f_x(x) = \frac{c^b}{\Gamma(b)} x^{b-1} e^{-cx}$ , x > 0.



calculated and the proper value of  $\Delta$  is updated.



#### **Theoretical Study**

• Assuming:  $\mathbf{x} \sim N(\mathbf{0}, \mathbf{C}_{\mathbf{x}})$  (vector of *N* Gaussian random variables) Then:

$$Q_i = \frac{1}{N} \mathbf{x}^T \mathbf{B}_i \mathbf{x}$$
$$Y_i = \sqrt{Q_i}$$

( $\mathbf{B}_i$  is a circulant positive semidefinite matrix)

• 1st and 2nd statistics of  $Q_i$ :

$$\mu_{Q_i} = E\{Q_i\} = \frac{1}{N} \operatorname{tr}(\mathbf{B}_i \mathbf{C}_{\mathbf{x}}) \quad ; \quad \sigma_{Q_i}^2 = \operatorname{var}(Q_i) = \frac{2}{N^2} \operatorname{tr}\left((\mathbf{B}_i \mathbf{C}_{\mathbf{x}})^2\right)$$

•The pdf of  $Q_i$  has not a simple definition (nor  $Y_i$ ).

- However  $Y_i$  can be approximated by a Gamma distribution.
- If  $C_x = \sigma^2 I$  then the variance of  $\log(Y_i)$  (assuming Gamma pdf), does not depend on  $\sigma^2$ . This can be used to extend the work [Ephraim & Rahim, 99] to MFCCs.



# **ISOLATED-DIGIT EXPERIMENTS**

Database: Recognizer:

Telephone-speech digits, ≈800 speakers, 4200 digits (2100 for training). CDHMM, 7 states, mixture with 6 components, diagonal covariance matrices. Silence model.



| Label    | Clean | SNR=20dB | Filter | Noise+Filter |
|----------|-------|----------|--------|--------------|
| L-Rasta  | 97.57 | 90.22    | 97.55  | 89.66        |
| J-Rasta  | 96.27 | 89.59    | 93.71  | 88.56        |
| MFCC_E_D | 97.67 | 80.49    | 94.81  | 47.57        |
| LPC_E_D  | 97.95 | 85.90    | 94.96  | 62.77        |
| GMedH    | 94.00 | 63,33    | 88.96  | 38.16        |
| SSenMn   | 88.01 | 68.00    | 87.30  | 54.25        |
| HMarHc   | 92.84 | 84.43    | 88.88  | 76.64        |
| HMarHnc  | 96.95 | 86.93    | 94.22  | 87.13        |
| GMarHnc  | 97.85 | 90.76    | 96.79  | 93.01        |
| GFMAns   | 97.19 | 94.45    | 93.77  | 91.73        |

G: Gamma-tone filter-bank H: Cochlear model filter-bank S: Seneff's filter-bank


| Pre-Processing:  | signal normalization (n)                                          |
|------------------|-------------------------------------------------------------------|
| Post-Processing: | clipping (c) or spectral subtraction (s)                          |
| Distortion:      | adding white noise (SNR=20dB) and/or filtering the speech signals |



## **Recognition Experiments with Connected-Digits**

(Elisabete Cordeiro, Jorge Rato, João Duque & Fernando Perdigão)

- Instead of using whole-word models or phoneme models... we used "syllable-like" models (phones).
- 5 noise/silence models
- Manual annotation of 100 sentences for model initialization.





# **Experiments with Connected-Digits**

- In order to take into account coarticulation between digits, <u>triphones</u> were used.
- Only 34 models were generated including monophones, diphones and triphones (with tied states).

Database:Connect-digits set from TELEFALA (sentences with 9 connected digits)Training set:1690 filesTest set:849 filesScores:96% correct words (32 mixtures, 2 reestimations)

----- Overall Results ----- SENT: %Correct=74.68 [H=634, S=215, N=849] WORD: %Corr=**96.07**, Acc=95.37 [H=7341, D=54, S=246, I=54, N=7641]

• Need to improve results.



#### **Recognition of Word-Commands for TV/VTR sets** (Experiments with the TIMIT Database)

(Gonçalo Pereira, Paulo Melanda & Fernando Perdigão)

- Task: Recognition of 37 word commands, e.g. /play/, /record/, /stop/ ... using sub-word models.
- Database: TIMIT

|                 | Total | Train | <b>Restricted test</b> | <b>Complete test</b> |
|-----------------|-------|-------|------------------------|----------------------|
| #sentences      | 6300  | 4620  | 192                    | 1344                 |
| #distinct texts | 2342  | 1718  | 192                    | 624                  |
| #distinct words | 6099  | 4891  | 912                    | 2371                 |
| #phonemes       | 45    | 45    | 45                     | 45                   |

- Results for TIMIT: 46.6%
- Results for the 37 words:  $\cong$  94%

------ Overall Results ------ SENT: %Correct=18.18 [H=2, S=9, N=11] WORD: %Corr=**93.61**, Acc=93.37 [H=381, D=1, S=25, I=1, N=407]

- Only 44 recordings (33 for retrain, 11 for test) with 37 words each
- Portuguese accent.



### CONCLUSIONS

- Auditory Models produce a rich representation of speech signals. However, Mean-Rate representation is very sensitive to noise and level variation in signals. Normalization and noise compensation is needed.
- The Functional Model of Adaptation works as well as or better than models operating in the time domain. It is almost as efficient as MFCC analysis.
- The REC project was very important to get experience on speech recognition systems. We intend to continue to research this area, specially on acoustic analysis for robust recognition.

